DESIGN, CONSTRUCTION AND DISTRUBUTED CONTROL OF HIGH DEGREE OF FREEDOM MODULAR ROBOT

APPROVED BY SUPERVISING COMMITTEE:

___ Mo Jamshidi, Ph.D., Chair

___ Jeff Prevost, Ph.D.

___ Ahmed Taha, Ph.D.

Accepted: ________________________________ Dean, Graduate School
DEDICATION

This thesis is dedicated to my dear family and friends. Thank you for providing me with constant inspiration, encouragement and support.
DESIGN, CONSTRUCTION AND DISTRIBUTED CONTROL OF HIGH DEGREE OF
FREEDOM MODULAR ROBOT

By

IKRAM HUSSAIN
MOHAMMED, B.E.

THESIS
Presented to the Graduate Faculty of
The University of Texas at San Antonio
in Partial Fulfillment
of the Requirements
for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Engineering
Department of Electrical and Computer Engineering
August 2016
ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor Dr. Mo Jamshidi for his support, his major help and directions during my master study and research. I would like to thank Dr. Jeff Prevost and Dr. Ahamed Taha for being members of my thesis committee, giving suggestions and productive comments. Also I would to thank Ben Champion and Dr. Patrick Benavidez and for his invaluable support and guidance, it would have been difficult to reach this point without his help. I am thankful to Berat Erol, Nicolas Gallardo, Ibrahim Mohammed, Abhijith Puthussery and the entire team of Autonomous Control Engineering laboratory for their support and collaboration. I would also like to thanks Air Force Research Laboratory and OSD through a contract with North Carolina Agricultural and Technical State University (Grant number FA8750-15-2-0116) for supporting this work.

Finally, I would like to express my sincere gratitude to my family for their encouragement and support.

August 2016
DESIGN, CONSTRUCTION AND DISTRIBUTED CONTROL OF HIGH DEGREE OF FREEDOM MODULAR ROBOT

Ikram Hussain Mohammed, M.S.
The University of Texas at San Antonio, 2014

Supervising Professor: Mo Jamshidi, Ph.D.

The ability for a robot to navigate different terrains is a big problem in the field of robotics. Designing and constructing a robot that is able to traverse a single type of terrain such as grassy fields, indoors, in the air and even under the water is a widely tackled problem and many different and viable solutions have been discovered and implemented. This issue becomes highly complicated when multiple non-uniform and potentially unstable terrains are to be traversed by a single robot, such as a collapsed building. A potential solution to this problem is presented within this thesis, this being a snake robot.

The design, construction and distributed control of a 3D printed snake robot is presented; with the modular design being focused on allowing for the fast and low cost generation and implementation of the robotic snake. This robot has been designed to complete a wide variety of tasks and motions such as serpentine motion, square-wave motion, mamba position as well as incorporating a climbing ability, all in which keep in check with the merits and demerits of the other snake robots. The square wave and climbing motion of the snake robot have been accomplished by utilizing a friction based push-pull method, thoroughly discussed within. In order to achieve smooth serpentine motion, a passive wheel adapter was fitted onto several of the modules to enable a more controlled motion. An approach is also investigated which allows the snake robot to be attached to the end of a serial manipulator robot to increase its prevailing degrees of freedom. The mechanical designing of the robot was achieved using the SolidWorks platform, allowing the prototyping the design to be carried out with 3D printing.
The control of the robot is based off Central Pattern Generators (CPG), a form of disturbed control. In accordance with the concept of CPG, an adaptable control architecture was developed so many forms of movement could be integrated into a single design. Robot Operating System (ROS) was used as an underlying architecture for the robot, allowing for the robot to have an adaptable design which could be easily modified according to the required application. A detailed description of the design, construction, control and testing of the snake robot is presented within this thesis.
TABLE OF CONTENTS

Acknowledgements .. iii

Abstract ... iv

List of Tables .. ix

List of Figures .. x

Chapter 1: Introduction ...1

Chapter 2: A study of snake-inspired robot designs ...4

 2.1. Designs of Snake Robot ..4

 2.1.1. Active bending joint and passive wheel type ...5

 2.1.2. Active bending and elongating joint type .. 7

 2.1.3. Active bending joint and active wheel type .. 8

 2.1.4. Passive bending joint and active wheel type .. 8

 2.1.5. Active bending joint and active crawler type ... 9

 2.1.6. Robots based on undulation using vertical waves11

 2.1.7. Active joint with fixed base type ..12

 2.2 Currently Implemented Snake Robot and Proposed Approch13

 2.2.1. Currently Implemented Snake Robot ..13

 2.2.2 Conclusion for the study .. 15

Chapter 3: Locomotion, Distributed control and control of snake16

 3.1 Locomotion ...16

 3.1.1. Lateral Undulation or Serpentine Motion ...16

 3.1.2. Linear Progression .. 17

 3.1.3 Concertina Locomotion ...17

 3.1.4. Sidewinding Locomotion ...18

 3.1.5. Climbing Locomotion ...19
3.2 Distributed Control and Control of Snake Robots..20
 3.2.1 Control of Snake Robots..20
 3.2.2. Distributed Control..23
Chapter 4: Mechanical Design and Construction of Modular Robot.................................26
 4.1 Design of Segment Module...26
 4.2 Housing..28
 4.3 Passive Wheel Adaptor..29
 4.4 Actuation ...30
 4.5 3D Printing..31
 4.6 Implementation and Construction of design in 3D Printer.................................33
 4.7 Cost..35
Chapter 5: Electrical Design of Modular Robot..37
 5.1 Control Architecture ...37
 5.2 Processing Unit...38
 5.3. Communication...38
 5.4. Head ..41
 5.5. Body..41
 5.6. Tail..42
 5.7. Power Source and Distribution..42
 5.7.1 Tether...42
 5.7.2 Battery..43
 5.7.3 Battery Selection and Schematic Diagram...45
Chapter 6: Control Algorithm...47
 6.1. Square wave Motion Algorithm...47
 6.2. Pole Climbing Algorithm..50
6.3. Standing Cobra position for surveillance

6.4. Sine wave motion with passive wheel

Chapter 7: Experimental Results

7.1. Testing Microcomputer and Communication

7.2. Testing Servos and controlling its position

7.3 Snake Robot in standing Cobra position

7.4 Square wave motion of snake robot

7.5 climbing of snake robot

Chapter Eight: Conclusion and Future Work

References
LIST OF TABLES

Table 1 Cost for implementation of design..36
LIST OF FIGURES

Figure 1: The world’s first snake robot - ACM III [7] ... 4
Figure 2: Active bending joint and passive wheel type robots [8] ... 5
Figure 3: ACM-R5 Snake robot [11] ... 6
Figure 4: Slim Slime Robot [13] .. 7
Figure 5: ACM-R4 Active bending joint and active wheel type [14] 8
Figure 6: Genbu - Passive bending joint and active wheel type robot [9] 9
Figure 7: Active bending joint and active crawler type robot [17] .. 10
Figure 8: CMU Modular Snake Robot [18] .. 11
Figure 9: Snake arm robot by OC robotics [20] .. 12
Figure 10: Lateral undulation [18] ... 16
Figure 11: Linear Progression [27] ... 17
Figure 12: Concertina locomotion [61] .. 18
Figure 13: Sidewinding locomotion [62] .. 19
Figure 14: Climbing locomotion [63] .. 20
Figure 15: CPG Oscillator [34] .. 22
Figure 16: Functional levels of a typical Distributed Control System [39] 24
Figure 17: DCS of Snake-like Robot ... 25
Figure 18: Components of 3D Printed Modular Robot [2] ... 27
Figure 19: Front Housing ... 28
Figure 20: Rear housing ... 29
Figure 21: Passive Wheel Adapter [2] ... 30
Figure 22: CAD Model of snake robot [2] .. 33
Figure 23: 3D printed modular snake robot [2] ... 33
Figure 24: Rubber skin attached to the robot .. 34
Figure 25: Snake robot with Passive Wheel Adapter ... 34
Figure 26: Snake robot used as End Effector [2] ... 35
Figure 27: Control Architecture Block Diagram [2] ... 37
Figure 28: Tether connection diagram .. 43
Figure 29: Schematic diagram of battery connection ... 45
Figure 30: CAD Model of Square Wave .. 48
Figure 31: Friction distribution of Square Wave Motion ... 48
Figure 32: Control Algorithm for Square Wave .. 49
Figure 33: CAD Model of Robot Climbing ... 51
Figure 34: Control Algorithm for Climbing ... 52
Figure 35: CAD model of Standing Cobra Position ... 53
Figure 36: Forward Motion generated by Passive Wheel ... 55
Figure 37: Left and Right turning using Sine Wave ... 55
Figure 38: Sine Wave Motion with Passive Wheel Adapter .. 56
Figure 39: Data Feedback Communication .. 58
Figure 40: Position and Load Feedback .. 59
Figure 41: Cobra Position for surveillance ... 60
Figure 42: Square Wave Locomotion [2] .. 60
Figure 43: Pole Climbing ... 61
CHAPTER 1
INTRODUCTION

Robotics constitutes of a wide variety of technologies that in which computational intelligence is incorporated in physical machines. This led to the creations of systems with capabilities far exceeding the core components alone, which could achieve potentially tasks that are unachievable by conventional tools and/or humans [1]. Robots has broad applications in various fields. It could be used in transit to places that are hazardous or unreachable to humans. In contrast, the mundane tasks in different fields could also be achieved, such as in agriculture, healthcare, environmental monitoring, education, or in personal service [1]. But depending on their market requirements, they are usually categorized as industrial robots and service robots [1]. Also, based on the terrain that they maneuver, they are improved and modified. When robots that operate on the land are considered, they can be categorized generally as tracked or wheeled robots. There are many challenges associated with these types of robots, that they are unsuitable for navigating through unstable terrain such as in a collapsed building or when navigating in tight/confined spaces such as the inside of a pipe [2]. To overcome these challenges, a high degree of freedom modular robot have been developed commonly known as snake robots.

Snake robots use their many internal degrees of freedom (DOF) to thread through tightly packed spaces, allowing the robot to have access to locations where people or machinery cannot reach [3]. These robots can coordinate their internal DOF to perform a variety of movements like crawling, climbing and swimming, making it suitable for number of applications such as search and rescue in disaster site, inspection of narrow and unstructured environments like collapsed buildings and even in reconnaissance situations [4]. Furthermore, when an operation
which requires a number of different obstacles to overcome, the locomotive adaptability of snake robots makes them great applicants. For instance, if a robot need to perform a task to carry a camera to the top of a tree which is located and growing in water, then three steps have to be performed in order to complete the task: move over ground to the water's edge, swim to the tree, and then climb the tree. One could make a robot that specializes in only one of those three tasks easily, but being able to do all three, and many other difficult combinations of tasks, is what makes snake robots exceptional [5]. A snake robot can also be used as end effector of a manipulator to increase the number of DOF of the robot.

This research work presents a high degree of freedom (DOF) modular robot or snake robot that combines the strengths of the current state-of-the-art designs with required innovations which are discussed in upcoming section. A modular robot has been developed to achieve complicated tasks such as: climbing, smooth serpentine motion, and increase an ABB Industrial Manipulator robot's DOF.

The Thesis is organized as follows. Chapter 2 presents a literature review on the existing and the current state of art snake robot, focusing on the design of different types of snake robots that have been constructed. The different type of locomotion, distributed control and control of the snake robot is discussed in Chapter 3. The mechanical design, construction and implementation of the design through 3D printing is presented in Chapter 4. In addition, the designing of both the modules for the snake as well as the construction of different add-ons required for different application is focused, and 3D printing as a fast manufacturing process is also discussed in order to demonstrate how this method of construction is ideal for prototyping this type of robot. In Chapter 5, the main focus is the electrical design of the robot, where the
many subsystems of the robot are presented, such as the power distribution system used, as well as the various sensors and the microcomputer that enables both local control and sensor processing. In Chapter 6, the control algorithm for serpentine motion, square wave motion, standing cobra position for surveillance and climbing up a cylindrical poll has been presented. The experimental results of the robot where all the testing of various components of the robot such as the microcomputer, servo, communication and execution of different that are explained in previous section are discussed in Chapter 7. Finally, conclusion and future work with regard to this type of snake robot are described in Chapter 8.
CHAPTER 2

A STUDY OF SNAKE-INSPIRED ROBOT DESIGNS

2.1 Design of Snake Robots

Snake robot consists of a large number of actuated links connected together in series called hyper-redundant mechanism [6]. Due to the high degrees of freedom in snake robots, they are able to navigate in a wide range environments. Shigeo Hirose is known as the founder of snake robotics. He was the first person to create a robot that employed the serpentine motion which is commonly found in real snakes. Figure 1 shows the snake robot ACM III, the first snake robot developed by Shigeo Hirose in 1972 [7]. In this section, a study based on mechanical design snake robot is reviewed.

Figure 1: The world’s first snake robot - ACM III [7]
2.1.1 Active Bending Joint and Passive Wheel Type

These robot types consist of serially connected active bending joints, and is equipped with passive wheels to reduce the ground friction, thereby enabling forward locomotion on flat surfaces. It is the most standard form of a snake robot. The example of these robots are ACM-III, ACM-R3 and ACM-R5 which are illustrated in Figure 2.

![Figure 2: Active bending joint and passive wheel type robots [8]](image)

ACM-R5, which stands for Active Cord Mechanism – R5, is an amphibious snake-like robot. This robot is the result of series of development by robot from ACM-1 to ACM-R4 and is one of the most advanced in the ACM snake robot family created by Hirose and Yamada [9]. It lies under the classification of active bending joint with passive wheel type. It is constructed and characterized by dust- and water-proof body structure. A similar model named HELIX with helical swimming motion [10] was built in 2002, and ACM-R5 is the modified model of HELIX. Figure 3 shows the ACM-R5 snake robot.

In order to realize the hermetic structure, a universal joint mechanism driven by a pair of geared motors from both ends is introduced. The external parts of these universal joint mechanisms are sealed by flexible bellows and an aluminum outer shell. The number of
connecting joints can be modified. This robot is composed of eight joints, which is 1.6 m in length and weighs 6.5 kg [8]. Figure 3(a) shows mechanical design of ACM-R5’s body module. The pitch motor and yaw motor are present at the left and right side of the joint. The joint design is illustrated in Figure 3(b) and Figure 3(c) [11] [12]. This is composed of motor and reduction gears that drive the universal joints, along with the bellows and outer shell to cover them. This robot is designed in such a way that the universal joint cannot transmit constant-velocity rotation when the connecting shaft is not coaxial or is inclined [8]. However, there is a discrepancy between these transmission mechanisms as the bellows that cover the universal joint can transmit constant-velocity rotation regardless of the angle of the connecting shaft. To resolve this problem, a passive rolling axis at the connecting member of the center of the universal joint was introduced. Motor joints are designed to be connected with a polyacetal tube, and an O-ring fitted in the tube’s groove keeps out water. Underwater swimming fins are attached around the outer circumference of the ACM-R5, and passive wheels are also attached to the tip of each fin to allow creeping motion on the ground.

Figure 3: ACM-R5 Snake robot [11]
2.1.2 Active Bending and Elongating Joint Type

When the snake robot is given freedom to elongate itself, the robot can exhibit motion like that of a worm. This motion makes it possible to have forward movement while maintaining a straight body form, so that the robot can move through a straight pipe where creeping motion is impossible to perform.

![Image of Slim Slime Robot](image)

Figure 4: Slim Slime Robot [13]

The slim slime robot [13] comes under this category; it is made up of linearly connecting multiple modules that pneumatically bend and elongate. Inside a module as shown in Figure 4, it has three bellows which are arranged equally round the circumference at an angle with respect to the axis of each module and sandwiched between disks [13]. These bellows expand when compressed air is supplied, and they shrink when the air is drained out. Both ends of each bellows are fixed with two disks, and the disks are connected to each other by expanding springs. Each bellow has two solenoid valves embedded, used for the intake and removal of the
compressed air. The module bends and elongates by controlling the compressed air that is supplied to the three bellows [8][13].

2.1.3 Active Bending Joint and Active Wheel Type

In this type of snake robot they have both serially connected active bending joints and active wheels which are driven by motors. The ACM-R4 snake like robot is an example of this type. It has both active joints and active wheels, and it consists of nine joint sections, and two active wheels in each section which is driven by a single motor [14]. The active wheels are attached in a way without interfering with the joint rotation around the axes. Inside each joint, the motors that drive the joint and the wheels are housed as shown in Figure 5. To provide space inside, a four point contact bearing with a large diameter is used for the joint’s rotation axis, and the joint is driven by internal gears. It is made from a rubber ring between the internal gears on the final stage of the drive system and the joint frame [8]. This robot has a great ability to go over obstacles when compared with other type of robots with passive wheels [14].

![Figure 5: ACM-R4 Active bending joint and active wheel type][14]

2.1.4 Passive Bending Joint and Active Wheel Type

This category of snake robot has motor driven wheels but has serially connected passive bending joints. The ‘Genbu’ robot (Figure 6) is classified under this group of the robot. It is
characterized by a structure that has a number of large-diameter active wheels attached to the body connected by passive rubber joints. All the wheels are independently driven, and the propulsive force of each wheel is transmitted through the elastically joined body [15]. Navigation can be done correctly by regulating the propulsive forces produced by the wheels so as to change the direction of the whole body. The body can inactively adjust to harsh landscape, so that any redundant force does not disturb the body even when it’s moving at higher velocity. This gives the body a high degree of toughness and durability. But the robot cannot be navigated if large gap exists or the terrain is markedly uneven in the environment.

![Genbu - Passive bending joint and active wheel type robot](image)

Figure 6: Genbu - Passive bending joint and active wheel type robot [9]

2.1.5 Active Bending Joint and Active Crawler Type

The characteristic of a snake-like robot is its slender and long body with active joints, in which each segment is covered with crawlers so that the propulsive force can be transmitted no matter how the crawlers come in contact with the rubble. The joints connecting the segments can be bent in two directions by a pair of prismatic links [16]. The model for this type of robot are “OmniThread” snake robot and “Souryu” (Figure 7). The first Souryu robot design was
developed by Hirose to explore the possibility of a functional ACM being used in restricted spaces [3]. The characteristic of this robot is its slender and long body with active joints, it is composed of three segments, with crawlers connected with bending joints. The bending joint is composed of a pair of parallel link mechanisms that are driven by slide screws. The right-handed screw and left-handed screw are set on both ends of the slide screw’s shaft, so that the robot can perform a symmetrical bending motion at the anterior or posterior connection parts simultaneously [8] [17].

OmniThread robot is much more powerful than Souryu as it is consisted of five segments that are connected by four 2-DOF joints. The thrust of the robot is achieved by using tank treads on the four sides of every link. The tank tread design maximized the “propulsion ratio”, the ratio of surface area that was active in propulsion to the surface area that was not. In order to maximize this ratio, tank treads covered as much of the sides as possible and the gap size between the links were minimized. The idea behind the maximization of this ratio was that any environmental
feature that contacts the robot at a location not covered by the treads would not impede the motion. Treads on each side also made the design indifferent to falling over [17].

2.1.6 Robots based on Undulation using Vertical Waves

This type of robot consists of active bending joints and does not have passive wheels on it. It uses its multiple degree of freedom to move. The PolyBot reconfigurable robot and the CMU Modular snake robot (Figure 8) comes under this category.

![Figure 8: CMU Modular Snake Robot](image)

The CMU’s modular snake robot is one the most efficient robot. This modular robots exhibits several snake-inspired gaits for achieving difficult tasks such as climbing, swimming and crossing gaps. Each module consists of a single servomotor, which created half of the structure of the module and provides the torque to move and maintains angles while resisting forces from the environment. To complete the other half of the joint, a U case is attached to the output arm. The U case has one end connected to the output of the servo and the other to the back of the servo. Moreover, the robots also utilizes modifications to their outer surface to improve performance in a number of environments. These modifications takes the form of a full, possibly
sealed, covering called skin or the adherence of additional material to the modules themselves, called compliance. The compliance material may serve to increase the coefficient of friction between the robot and the surface in order to better simulate the function of a snake's scales in contact with the terrain [19].

2.1.7 Active Joint with Fixed Base Type

This is a robot which has a fixed base. It is similar to a manipulator arm, but with high degree of freedom. It is mainly used in manufacturing applications as well as being able to be used in hazardous environments, such as a nuclear power plant.

Figure 9: Snake arm robot by OC robotics [20]

Figure 9 shows the Snake-arm robot developed by OC robotics. Snake-arm robots are highly flexible robots ideal for working in confined and hazardous spaces. They are driven by wire ropes, and controlled by OC Robotics’ proprietary software, snake-arm robots are able to traverse cluttered environments and conduct activities such as inspection, fastening and cleaning when integrated with off-the-shelf or custom design tools [20]. These robot find its application in nuclear decommissioning and aerospace. In the process of nuclear decommissioning, a snake-arm robot is combined with a 5kW laser to enable a selective, remote-controlled approach to
dismantle and decommission complex structures in hazardous and confined nuclear environments. A 2.5m long and 100mm diameter self-supporting snake-arm robot with integrated navigation camera and lighting was adapted to carry the laser cutting head. The snake-arm control system coordinated tip motion with the laser control to cut a variety of different substrates. Laser Snake was operated in a mock-up through a 1m long, 200mm diameter penetration that simulates a cell wall. Inside the mock-up was a representative vessel and pipe work. The snake-arm cut a hole in the vessel wall to allow it access beyond. From here, the snake-arm avoided obstacle and pre-programmed cutting paths were used to cut the target pipes [21].

2.2 Currently Implemented Snake Robot and Proposed Approach

This section further discuss about snake robots currently been implemented in research and industrial field. The above mentioned robots includes most of the designs of the snake robot available, out of which CMU modular snake robot, ACM-R5 and Snake-arm robot by OC robotics are currently under research and development.

2.2.1 Currently Implemented Snake Robot

At the beginning of the design and construction of the modular robot began, research was conducted meticulously in the various different forms of snake robots that have currently been implemented [22] [23] [24] [25]. The main variants of the snake robot are described here.

CMU modular snake robot, the first model of snake robot investigated here, is the type of snake robot that can move in a 3D manner. This allows a wide variety of movements, such as climbing and linear progression, sidewinding, rolling, cornering and pipe rolling [26], where its
primary form of motion is the corkscrew motion. The design of the robot was more inclined towards its feature of expandability, since every segment that constitutes the snake robot being exactly the same, with the exception of head and tail of the robot. Each of these unique segments contain only a single DOF, but when combined they provide the robot n degrees of freedom, relative to the length of the snake [26]. This snake robot was initially prototyped using a 3D printer, and is now constructed with aluminum and rubber in order to offer grip and durability. This robot is powered and controlled via a tether [22], which makes it incapable of far-away navigation from a base station. This tether could also potentially become entangled on various obstacles in the environment.

The next robot to be considered, ACM-R5, is the most advanced in the ACM snake robot family created by Hirose and Yamada [8]. ACM-R5 is an amphibious snake robot which has ability to move both on land and in water. This robot is composed of nine Modular Universal Units [23]. Each of these modules have two degrees of freedom with an on-board CPU and power unit. Its attached passive wheels allows it to maneuver quickly on a smooth surface. It is waterproofed using O-rings and other water proofing accessories, in order to provide smooth movement in water. It has the ability to execute different motions like serpentine locomotion, concertina movement, sidewinding, S-shape and E-shape rolling, arc-shape rolling and helical rolling, but its primary motion is serpentine movement [23]. The disadvantage of this robot is its inability to climb.

Unlike the previous two snake robots discussed here, this snake robot is of a different kind developed by OC robotics, the snake-arm robot [20]. This is a fixed robot which is mainly used in manufacturing applications and in hazardous environments, such as a nuclear power plant. The fixed base present in this robot, accommodates all the actuation and electronics required to
mobilize the robot. It is driven by a wire rope and controlled via software to acquire the desired positions. Its design consists of a hollow core; therefore, cabling, hoses and other equipment can be routed though the center of the arm. There are two types of snake-arm robots available for these applications, namely the spatial snake-arm robot and planar snake arm robot. The former robot, i.e. the spatial snake arm robot, has a total of 12 links with two DOF each. This results in providing a total of 24 DOF to the system. The latter robot is the planar snake robot. This robot only has the capability to articulate itself in one plane. This robot is very compact, because it is able to save space by coiling around an actuator pack.

2.2.2 Current Proposed Approach

After stringently analyzing the aforementioned snake robots, the strengths and weakness can be obtained. The CMU robot is one of the most versatile robots, since it has the capacity to move with most of the snake movements. But, it lacks the ability to traverse in the traditional serpentine type motion. Conversely, the ACM-R5 robot can move in serpentine motion, but is incapable of climbing up different types of objects. The final type of robot discussed, i.e. the snake-arm robot, does not use a modular design but is able to achieve a high DOF by utilizing a series of cables attached to motors within its base. During the design phase of the presented robot, these merits and demerits were considered.
CHAPTER 3

LOCOMOTION, DISTRIBUTED CONTROL AND CONTROL OF SNAKE ROBOT

3.1 Locomotion

In snake robotics, there are various forms of movement that are applied to fashion a snake robot. Every form of movement is designed for different purposes, depending on the type of situation, terrain, as well as the surrounding environment. This chapter focuses on the movement of snake robots in both two dimensional (2D) and three dimensional (3D) plane. It discusses various locomotion such as lateral undulation or serpentine motion, linear progression, concertina locomotion, sidewinding locomotion, and climbing motion.

3.1.1 Lateral Undulation or Serpentine Motion

Lateral undulation is the fastest and the most common form of snake locomotion. This type of locomotion is also called as serpentine motion (Figure 10). The formulation of the serpentine curve gives the mathematical description of lateral undulation [27]. It is a continuous movement of the entire body of the snake relative to the ground.

Movement is acquired by propagating waves from the front to the rear of the snake robot while using roughness in the environment. Thus this form of locomotion is not suitable on smooth surfaces. All part of the body passes the same part of the ground ideally leaving a single sine
curved track, while there is never any fixed contact between the ground and any point along the body [18]. The weight distribution of a snake during this motion is not uniform, but rather distributed so that the peaks of the body wave curve are slightly lifted from the ground. The efficiency of lateral undulation is mainly based on two factors: (1) The contour of the ground, where the more contoured the ground, the more efficient is the locomotion; (2) The ratio between the length of the snake and its circumference [28].

3.1.2 Linear Progression

In this kind of motion, the snake grapples its body at specific point that appear continuously move tail wards (Figure 11). Sine waves are directed through the length of the snake robot, driving it either in forward or in reverse direction. This sine wave is sent through the vertical modules, which repetitively picks up modules, advances them through the air and places them slightly forward of their initial position on the ground. The horizontal modules are utilized only to steer and adjust the robot [20] [27].

![Figure 11: Linear Progression [27]](image)

3.1.3 Concertina Locomotion

Concertina locomotion are commonly used to navigate through narrow space where the range of movement is constrained and limited (Figure 12). The term by itself indicates that the snake stretches and folds its body to move forward. The principle behind concertina locomotion
depends on the difference between the large static friction forces at the anchor points and the low kinetic friction forces in the part of the body which is extended [18]. By using this principle, movement is carried out by first pushing the front part of the body forward, while the back part is curved a few times to give a grapple against the narrow space. Once the head and front part of the body has crossed the narrow space, the front portion of the body is curved in order to pull the back part of the body front. This motion is repeated to achieve locomotion [29]. Due to the stop-and-go movement of the body, momentum is not conserved and, thus, the mode of motion is not efficient in terms of energy consumption and it is slow. It is seven times less efficient when compared to other kinds of locomotion in real snakes [20]. However it is often used in order to traverse tight spaces. But if the path is too narrow when compared to the diameter and the curving capacity of the snake, then the snake cannot progress by this motion pattern [30].

![Figure 12: Concertina locomotion](image)

3.1.4 Sidewinding Locomotion

This type of locomotion is typically utilized on surfaces with low shear, for example, sand, desert and loose gravel. It is currently one of the fastest ways for these snake robots to travel through rugged or uneven terrain (Figure 13). Unlike lateral undulation, there is a brief
static contact between the body of the snake and the ground. At any given instant, at least two portions of the snake are in static contact with the ground. The rest of the snake body is lifted and moved forward. To rotate the robot at the same place the front half of the snake to the right, and the back half of the snake to the left has the effect of spinning the snake robot in place [31]. In control point of view one vertical and one horizontal sine wave interact to make the snake robot move sideways.

![Figure 13: Sidewinding locomotion](image)

3.1.5 Climbing locomotion

There are three kinds of climbing environment - channel climbing, tube climbing and pole climbing (Figure 14). A variant of linear progression is used to climb each of the above mentioned environment. First, channel climbing is a variant of linear progression, where the amplitude and period of the sine wave are adjusted to fit the chosen channel or pipe. Channel climbing snake robots are often fitted with a protective skin or rubber to provide additional friction and compliance. No adhesives are used to achieve snake robot channel climbing, only outward pressure provided by the sine waves. Similar to channel climbing, the snake can also
climb up the inside of pipes or tubes. A variant of linear progression can be used to climb a pipe or tube, as in a channel, but since a pipe is cylindrically symmetrical, the snakes can also use a modified version of corkscrewing to climb a pipe. Pole climbing refers to moving upwards on cylinders whose perimeter is less than the length of the snake robot. The robot moves upwards without the aid of any adhesive by spiraling its body around the pole, gripping it, and using the rolling gait to travel up or down the pole. Snake robots are able to transition directly from another gait to pole climbing [20].

![Figure 14: Climbing locomotion [63]](image)

3.2 Distributed Control and Control of Snake Robots

This section discusses about control of a snake like robot and the way distributed control is implemented through it. Control of snake robot can be performed using various theories and methods which have been discussed starting with Central Pattern Generators (CPG), PID controller and fuzzy logic.

3.2.1 Control of Snake Robots

This section discusses about the different theories and methods of control of snake robot, starting with Central Pattern Generators (CPG), PID controller and fuzzy logic.
3.2.1.1 Central Pattern Generators (CPG)

Central Pattern Generators (CPG) is a new method of control that has been developed specifically for snake robotics. This method of control is based around trying to solve the problem of the large amount of computing time that is required to control a system with such a large amount of DOF [32]. To come up with this solution, the researchers looked at how Nature solved this problem. They wanted to know how simple creatures like insects could react so quickly to their environment, when they only have a limited amount of neurons compared to larger animals such as humans. It was discovered that this is because creatures like these do not have one control center where they process all of their data, like a human brain. Instead they have a decentralized collection of neurons that individually process the information, and send this processed data back to the main processor to be handled. This concept was applied to their snake robots. By using this technique, they were able to process all of the sensor readings taken in each of the segments, and then send this processed data up to the head segment (Figure 15). This technique frees up processing time for the main processor as it does not have to waste time completing tasks such as waiting for the sensors located in the segments reflected single to be recorded [33]. As explained in literatures [32] [34], this method allows the individual segments of the snake robot to control segment orientation, so that better motion of the snake can be achieved, and each segment can adjust locally for different scenarios, such as applying more contact force to the ground. By using this method, Wu, et al. [35] are also able to propose a simplified control method on how to make the snake generate the serpentine type movement by simply getting a segment to pass its current position to the next segment in line, when it receives a new position from the control unit [33].
3.2.1.2 PID Control

The next method of control that has been investigated is Proportional-Integral-Derivative (PID) control. PID controllers themselves have been around for a long time implying that there has been a lot of research conducted into the operation and application of this type of control. Due to this, Hasanzadeh & Tootoonchi [36] chose to attempt and implement the use of PID control to a snake robot. To have the capacity to control so many DOF’s, they employed a two level PID control system. This method works by assigning each segment of the snake an individual PID controller. This controller is responsible for controlling the torque and the orientation of the segment that it is assigned to. The next PID controller is called the high level controller and is responsible for controlling the speed and direction of motion of the snake robot. The output from this PID controller is fed back into the lower level PID controllers, allowing them to compensate for the change in direction or speed. So far no evidence of this type of control method applied to a real robot snake has been found, but simulations show that it has the ability to react faster than most other methods [33] [36].

Figure 15: CPG Oscillator [34]
3.2.1.3 Fuzzy Logic

The last method of control that has been looked at is the application of fuzzy logic in snake robotics. This form of control has been well researched in many areas of robotics and control. In this method of control, a lot of data is able to be quickly fused together to enable quick reactions to obstacles. This would be useful for a robot that operates in 3D, but in the case of Wu et al. [37], it has been applied to a robot in 2D to test the control theory in a snake robotics application. The fuzzy logic system works by finding the distance and the angle between the head of the robot and the target point. From this information, the action that the robot needs to do to reach the target is determined, for e.g., to go fast if the target is a long way away or slow if the target is close, and turn [33].

After analyzing the various control method, the CPG method of control is a better option to be implemented when compared to fuzzy logic and PID control, as it is the best way to solve problem regarding computation time, which is required by a robot with such a large degree of freedom. This CPG control is a form of a distributed control system. Therefore, distributed control was applied in the presented robot. The upcoming section discusses generally about distributed control system and how it is implemented in snake robot.

3.2.2 Distributed Control

Distributed Control System (DCS) is a specially designed control system used to control large and complex applications in industrial processes, wherein controllers are distributed throughout the system. The important characteristic of distributed control system is “centralized management and decentralized control” [38]. This is in contrast to non-distributed systems, which uses a single controller at a central location.
In a DCS, a hierarchy of controllers is connected by communications networks for command and monitoring. Figure 16 shows the functional levels of a typical DCS [39]. As seen in the block diagram, the plant consists of elements such as sensors, motors, valve, etc. which are directly controlled by the microcontrollers, that are in turn controlled by supervisory computers and they are controlled by coordinating computers. On top of all these computers, the centralized management lays the computer center which assigns task for all the computers. This is a level 4 DCS which are used in industries to control large, complex and geographically distributed task.

This approach can be implemented in control of snake robots as it has high degree of freedom. In this thesis work, the proposed snake robot uses the above principal to control the snake robot. The central pattern generators (CPG) uses this method to control the snake robot which is discussed in upcoming section. Figure 17 shows the block diagram of distributed control system of a snake-like robot. It consists of Servo along with position, torque and other
sensor in accordance with the design of the robot. These sensors and devices are controlled by microcontroller, which takes command from the microcomputer located at the head of the snake robot which is in turn controlled by main computer.

Figure 17: DCS of Snake-like Robot
CHAPTER 4

MECHANICAL DESIGN OF MODULAR ROBOT

4.1 Design of Segment Module

Each module of the 3D printed modular robot functioned as single rotational joint with one Degree of Freedom (DOF). Every module could be rotated 90 degrees with respect to previous module, as a result enabled the generation of movement utilizing many different methods. Each module is connected to the previous module in such a way that the axis of rotation is perpendicular with respect to previous one. The robot was able to generate movement in all three axis given at least four segments in the chain, since it had two different axis of movement in each segment pair. In other words, the modules allowed for movement in both vertical and horizontal axis, hence enabled the robot to move in a 3D plane. The current design consisted of 16 modules including a head and tail module that can be altered according to the application. This many modules provided 16 DOF, which can be increased or decreased by simply adding or subtracting the amount of conjoined modules. Each module was 2.15 inches (5.48 cm) in diameter, and had a length of 2.95 inches (7.5 cm) in-between the joint axes.

The module comprised of a housing, a Dynamixel servo motor, a Lithium polymer (LiPo) battery and an internal channel (Figure 18) that allowed the communication and power cables to be passed down the chain. The housing was constructed via 3D printing using PLA, a commonly used biodegradable 3D printing material, which contained all of the components within the module. The torque and velocity required to provide movement to the next module was provided by the Dynamixel motor. Every module had a single cell (1s) 3.7V LiPo battery inside, which is connected with two other modules in series that made up to 11.1 volts required to power the segments. Due to this reason, pairs of three modules should always be used. Then, each
segment's power was connected in parallel to the rest of the snake. This allowed for any of the modules to always have enough current available to them that provided the maximum torque possible to each of the motors. This allowed all the modules to always have enough current available to them, in order to provide the maximum torque possible to each of the motors. It also ensured that each segment of the snake was always powered, whereas the other segments of the snake were able to operate.

Figure 18: Components of 3D Printed Modular Robot [2]
4.2 Housing

The housing consisted of two parts, namely the front housing and the rear housing. The front housing is the most important part of the module. This comprised space to house both the battery and the servo motor. As shown in Figure 19, the extra space was provided by B-space in order to accommodate battery perfectly inside the housing, while the M-space offered the perfect contact area to hold the servo. Parts of the wall of the module were thinned slightly, so that the accommodation of the wires providing both communication and power to the next module was possible. This was done in a circular pattern around the module, as opposed to only done in a single place, in order to reduce a weak-spot being made in the housing wall. The rear housing acted as a cap to cover the module. Figure 20 depicts the front and rear housing of the robot.

Figure 19: Front Housing
To enable the many different types of movement present when snake robots are considered, a cylindrical design for the housing was selected. For both rolling and climbing activities, a cylindrical design was optimal. This housing was designed in such a way that any part of the robot would not exceed 2.16 inches (5.5cm) in diameter. As the center part of the body is cylindrical, it could accommodate the structure for the passive wheel adapter, which can be attached and detached according to the application. This passive wheel adapter provided the ability for the robot to perform the types of movement that a cylindrical body is not accustomed to, such as the serpentine type movement.

4.3 Passive Wheel Adaptor

The passive wheel adapter consisted of six passive wheels to be placed 60 degree apart and attached to the passive wheel support, as shown in Figure 21. The wheels were fastened in between the wheel holder using paper clip pins. These paper clip pins are cheap and made of
steel which act as best axial for the wheels. In between the wheel and the wheel holder, washer of 1mm thickness was placed in order to reduce friction. Also, in order to slide over each of the modules, the wheel adapter had a small opening in the support. A screw and bolt was then used to fasten the passive wheel support together, which enabled the structure to be attached to the module. Thus, fast serpentine motion was achieved with the help of this device, whilst not sacrificing the ability for the snake robot to perform the other types of motion when required.

![Passive Wheel Adapter](image)

Figure 21: Passive Wheel Adapter [2]

4.4 Actuation

Many different types of Actuation can be used for snake robots such as pneumatic, electric motor, servos, cable actuation or driven wheels [20] [41]. For this robot, servo motors were considered. The Dynamixel servo motor was selected due to the presence of on board microprocessor that provided bus communication, positional feedback, temperature and load monitoring [42]. In addition, these motors had adjustable torque speed and response control with
position, load, voltage, speed, and temperature feedback. This facilitated the formation of a closed loop control system with relative ease. The servos used TTL or RS-485 serial communication and allowed for a daisy-chain bus connection at up to 1-3Mbps. The control algorithm used maintained the shaft positions on the servo, which can be adjusted individually for each servo that allowed the user to control speed and strength of the motor's response. All of the sensor management and position control is handled by the servo's built-in microcontroller. Amongst the Dynamixel servos available, the AX-12A servo was selected for this application [42]. The most affordable servo with built in microcontroller was this version of the servos. It operates at 12V 900mA, weighs 55g and provides a stall torque of 15.3 kg.cm. Apart from all of the features mentioned above, these servos used TTL half-duplex asynchronous serial communication as well. Therefore due to the above stated advantages and the affordable cost of the servo, this servo motor was chosen and implemented in current application.

4.5 Three Dimensional (3D) Printing

In order to prototype the casing of the robot, 3D printing was used. 3D printing, otherwise known as additive manufacturing, is a process of creating three dimensional solid objects from a digital file [43]. A 3D printed object was created using the additive processes, as opposed to the subtractive process used by most other techniques, such as by a CNC machine. The process utilized by this additive manufacturing machine is referred to as the Fused Deposit Modeling method. In this technique, an object is created by laying down successive layers of material on top of each other until the whole object is completed. If the horizontal cross section of the final object was observed, each of these layers could be seen [44]. To 3D print an existing object, the digital file of the object was made using a 3D scanner. Whereas for the creation of a totally new object, a Computer Aided Design (CAD) program was used. When the model has been
completed, the file was then be saved in a general file type, such as the STL format, which is processed by software known as “slicer”. This software converted the model into a series of thin layers and produced a G-code file containing instructions tailored to a specific type of 3D printer which enabled the printer to create the model.

3D printing helped in speeding up the prototyping process along with being inexpensive. It was an immense advantage, because if the same parts were to be manufactured manually it would take a significantly large amount of time to complete, along with being extremely expensive due to the labor and machine costs involved. Also, it was easy to find problems in the design, fix it and then print the design again, when the first module was printed. Due to this, the accommodation for new communication and power lines was possible.

An open source 3D printer called Lulzbot Taz 4 was used to print each module of the snake robot, since it supported material such as PLA, ABS, HIPS, Ninja Flex etc. The chosen material among these materials was PLA (Poly-lactic Acid) because it demonstrated significantly less part warping, higher maximum printing speeds, lower layer heights, sharper printed corners and affordable pricing compared to some of the available options. In CAD software, the virtual design for printing the module was designed, in this case using SolidWorks, and saved in the STL format. This .stl file was then opened in Cura LulzBot, which acts as the slicer and therefore converts the model into GCODE as well as allowing the user to control the operation of the 3D printer.

Unfortunately, there are some disadvantages when using 3D printed parts of this material, as they are generally neither strong nor durable, in comparison to the parts that might be constructed using other methods. For this reason, 3D printing is used only for the prototyping stage of this robot. In case of uses in a potentially hazardous environment, such as a collapsed...
building or a site, where there might potentially be exposure to corrosive environment, the casing for the modules would require to be produced using either more traditional methods with stronger metal materials, or be constructed using an industrial grade 3D printer.

4.6 Implementation and Construction of Design in 3D Printer

The implementation of the developed design was done both in software and hardware. Figure 22 shows the assembly of the module in the CAD software depicting all of the modules connected together to form the robot. This simulation aided in finding the problems associated with the design and in studying the movements of the robot before the physical models were produced.

![Figure 22: CAD Model of snake robot](image)

The 3D printing process of this robot took a total of approximately 250 hours to print all the sixteen modules without any failures, and with failure and reprinting took a total of around 400 hours. The model of the snake robot after printing is illustrated in Figure 23. All of the modules had been assembled to each other and wired showing the completion of the robotic snake.

![Figure 23: 3D printed modular snake robot](image)
The outer face of the 3-D printed materials had relatively low coefficient of friction and fast wear, especially in rough outdoor environments. In addition, the plastic base cracked easily under impacts that resulted in pieces of skin falling off the robot. A rubber skin was attached on the contact surface, as shown in Figure 24, to increase the coefficient of friction. Bicycle tube was used here, which was cut in small section and slid through each module providing cheap and efficient solution for increasing the coefficient of friction. Figure 25 shows the ability of snake robot to attach passive wheel adapter on its body to achieve smooth serpentine motion of the snake robot, while connecting passive wheel adapter only alternate segments were attached with passive wheel adapter. Similarly, Figure 26 illustrates that the snake robot had the capacity to fasten itself to the industrial robot to increase its degree of freedom. When attaching to the industrial robot, the battery inside each module were removed and external power source was made available. Depending upon the application, the tail and head of the robot were changed.
4.7 Cost

A breakdown of the components and their cost are provided in Table 4.1. The most expensive part of the robot was the Dynamixel servos. The features that servos provided were deemed worthy of the cost. Each servo had an on-board microcontroller that provides bus communication, motor state feedback such as positional, load, voltage, speed and temperature feedback [11]. Further relevant features assisted the formation of a closed loop control system with relative ease as discussed under actuation section.
Table 4.1: Cost [2]

<table>
<thead>
<tr>
<th>S.No</th>
<th>Item</th>
<th>Quantity</th>
<th>Price Each ($)</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AX-12 Dynamixel Servo Motor</td>
<td>16</td>
<td>$37.5</td>
<td>$600</td>
</tr>
<tr>
<td>2</td>
<td>USB2Dynamixel</td>
<td>1</td>
<td>$49.9</td>
<td>$49.9</td>
</tr>
<tr>
<td>3</td>
<td>Lipo Battery (3.7V 750mAh)</td>
<td>15</td>
<td>$3.5</td>
<td>$52.5</td>
</tr>
<tr>
<td>4</td>
<td>3D printing filament (PLA) 3mm, 1Kg Reel</td>
<td>1</td>
<td>$24.95</td>
<td>$24.95</td>
</tr>
<tr>
<td>5</td>
<td>Raspberry Pi Zero</td>
<td>1</td>
<td>$5</td>
<td>$5</td>
</tr>
<tr>
<td>6</td>
<td>USB Hub</td>
<td>1</td>
<td>$10.99</td>
<td>$10.99</td>
</tr>
<tr>
<td>7</td>
<td>Camera</td>
<td>1</td>
<td>$33.90</td>
<td>$33.90</td>
</tr>
<tr>
<td>8</td>
<td>IMU</td>
<td>1</td>
<td>$29.95</td>
<td>$29.95</td>
</tr>
<tr>
<td>9</td>
<td>IR Sensor</td>
<td>1</td>
<td>$13.95</td>
<td>$13.95</td>
</tr>
<tr>
<td>10</td>
<td>Wifi Module</td>
<td>1</td>
<td>$8.99</td>
<td>$8.99</td>
</tr>
<tr>
<td>11</td>
<td>Miscellaneous (Connecting wires, screws, nuts, etc.)</td>
<td></td>
<td></td>
<td>$65</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>$895.13</td>
</tr>
</tbody>
</table>
CHAPTER 5
ELECTRICAL DESIGN OF MODULAR ROBOT

5.1 Control Architecture

In order to control the presented robotic snake, different approaches were considered. The first approach to be considered was embedding a microcomputer directly into the head unit of the snake, such as an ODROID, Raspberry Pi or Raspberry Pi zero. This allowed for the local control of the robot, as Robotic Operating System (ROS) was able to run on-board. The next feasible approach that had been considered was to utilize a simple microcontroller, such as the Arduino Nano or Arduino Mega 2560, equipped with a Wi-Fi module, so that back and forth communication from a processing unit, such as a laptop, was possible. This enabled the use of ROS to control the robot for actuation. This could also allow enabling future applications.

Figure 27: Control Architecture Block Diagram [2]

A description of the proposed setup is depicted in Figure 27. The control unit for the system was the Raspberry Pi Zero, since it is a very small and inexpensive microcomputer, which was one of
the major contributing factor for the choice. It also had the benefit of having a form factor similar to that of a microcontroller, thus allowing the modular system to stay relatively small.

5.2 Processing Unit

For choosing processing unit, there were many options such as an ODROID, Raspberry Pi or Raspberry Pi Zero. But in this robot Raspberry Pi zero was used, because of its 1Ghz, single-core CPU with 512MB RAM that included 40-pin header composite video and reset headers, and USB On-The-Go ports [45] which allowed additional sensors like USB camera, IMU sensor, Wi-Fi dongle and usb2dynamixel.

Robot Operating System (ROS) was installed onto a Raspberry Pi Zero which controlled the angle of all the connected servos, as well as interpreted feedback from the servos such as position and temperature of each and every servos. ROS is an open source meta-operating system that offered a message passing interface between processes across a network of installed nodes [46]. These nodes need not be located on the robot, making it ideal for a mobile robot as processing can be moved to another unit, assuming it is on the same network. Utilizing a common messaging systems such as ROS likewise allowed the system to be easily integrated into a much larger system, which also utilizing this messaging system. This principle was used and laptop was able to use the ROS environment to access and transmit information to and from the Raspberry Pi Zero.

5.3 Communication

Communication is an enabling technology in the field of robotics. In this section, we discuss various communication devices that can be used in this robot for communicating between the robots and processing unit (i.e. laptop).
5.3.1 Bluetooth

Bluetooth is a wireless technology standard for exchanging data over short distances. They are usually used to connect two or more devices together for the transfer of data by means of a short-wavelength UHF radio waves in the ISM band from 2.4 to 2.485 GHz. [wiki] [20]. Data rate provided by Bluetooth varies by the Bluetooth communication protocol used by the device with 1 Mbps for the low-energy protocol, 1 Mbps for Version 1.2, up to 3 Mbps for Version 2.0 EDR and up to 24 Mbps for Version 3.0 HS. [47] [48] The range of the Bluetooth devices is 10 meter figure for class 2 radio devices and they are limited to many real world factor such as wall or any barrier decreases the range of the device. The 2.4 GHz radio frequency used by Bluetooth is strongly absorbed by water. Application of Bluetooth is prominent in robotics as most mobile phones support Bluetooth protocols and the user to design an application for controlling robots via the phone. A good example of a robot with Bluetooth is the LEGO Mindstorms Robot, which is mainly used for educational use [49]; implementation of various programmable activities of the robot can be started though software installed on compatible cell phones.

5.3.2 ZigBee Pro

ZigBee Pro is a wireless technology developed for low power, low data rate, wireless communication applications. The ZigBee standard operates on the IEEE 802.15.4 physical radio specification and operates in unlicensed bands including 2.4 GHz, 900 MHz and 868 MHz [50]. Its low power consumption limits transmission distances to 10–100 meters line-of-sight, depending on power output and environmental characteristics. ZigBee devices can transmit data over long distances by passing data through a mesh network of intermediate devices to reach more distant ones [51]. Applications using ZigBee are typically those of control and remote
sensing operations, such as industrial automation, home automation, smart energy metering and grid monitoring [52], which benefit from the low power consumption of the radio modems. ZigBee radio modems are also used in robotics as they are simple to integrate into designs of robots through a serial or USB connection. ZigBee devices support various network topologies including mesh networks which allow for capabilities for a robot system to operating over large areas [48].

5.3.3 Wi-Fi

Wi-Fi is a technology that allows electronic devices to connect to a wireless LAN (WLAN) network, mainly using the 2.4 gigahertz (12 cm) UHF and 5 gigahertz (6 cm) SHF ISM radio band [53]. The IEEE 802.11 standard is used in these Wi-Fi. It is a set of media access control (MAC) and physical layer (PHY) specifications for implementing wireless local area network (WLAN) computer communication in the 2.4, 3.6, 5, and 60 GHz frequency bands [53]. Wi-Fi IEEE 802.11 is an attractive option for wireless communication for robotics because of its already common use and compatibility with internet communication protocols [48]. Wi-Fi is used in many devices including laptops, smaller internet notebooks (netbooks), video game consoles, digital cameras and smartphones for the purpose of connecting to a wireless network that provides access to the Internet. Use of Wi-Fi for robotics is limited to the range and power consumption of Wi-Fi hardware. Range of Wi-Fi is dependent upon many factors including the Wi-Fi protocol and the use of single or multiple antenna in the radio device; a typical range is provided as being between 50 meters to 150 meters, assuming there is no interferences to the signal such as walls, buildings and electronic interferences in the 2.4 GHz range [53]. In this robot Edimax, Wi-Fi dongle is used. It supports 150Mbps 802.11n, Wi-Fi USB adapter, Nano size which is ideal for Raspberry Pi.
5.4 Head

The head was equipped with a camera, an IR sensor, an IMU and the Raspberry Pi zero. In addition, an LED was installed for illumination during pipeline inspection during night and in a dark environment. In order to find the distance of an obstacle or an object in front the robot, the IR sensor was used. This is useful because it allowed the robot to pick an object, when an end effector was attached to the head of the snake. An Internal Measurement Unit (IMU) with 10DOF was used, which gives 11 axes of data: 3 axes of accelerometer data, 3 axes gyroscopic, 3 axes magnetic (compass) and temperature, which made it possible for many different applications [54]. Raspberry Pi Zero, the microcomputer used here, acts as a data exchange hub. All of the different sensors, as well as the servo motors, were attached to the Raspberry Pi Zero via a USB hub. Using a standard connection such as a USB, also enabled the rapid expandability of the system because, many different sensors have this interface available. The Raspberry Pi Zero collected all of the available data from the robot such as the camera, IR, IMU, position, load, voltage, speed and temperature data, and sent it to the processing unit via a Wi-Fi connection. The processing unit calculated the required positions that the servo needs to be in. This information was then transmitted to the microcomputer, which was able to move the attached servos to the desired positions.

5.5 Body

The body consisted of a chain of modules connected together in series. The servos inside the module used TTL serial communication to receive commands and send back sensor data to the microcontroller. A daisy-chain wiring scheme was applied to this system, in which multiple servo were connected together in a series sequence, thus reducing the number of wires required
in the robot. This daisy-chain approach moreover allowed for the system to be quickly scaled up or down as needed.

5.6 Tail

The tail of the robot was a specialized module. It constituted of a switch to turn off and on and to charge the robot. It also consisted of an opening for connection to the tether and a socket for charging the robot. This tail could be modified depending upon the application, for instance, it can be modified to carry a small camera to allow the user to lift up the tail and see the front portion of the robot.

5.7 Power Source and Distribution

The robot could be powered either through battery fitted inside the robot or using tether carrying power and communication. This robot was opted with both the options, so that it could be used depending on the application. If the robot is used for search and rescue, or pipeline inspection, or any other application, which requires the robots to navigate and move, then battery source option can be used rather than tether; since tether makes it unable to navigate too far away from a base station and tether could also potentially become entangled on various objects in the environment. In the case in which this robot is used as end effector, then the tether option can be used and the battery can be removed, as the battery reduces the overall weight and thus, allowing robot to increase its payload capacity, as the payload capacity depends on the length and weight of the link. The subsection of this topic discuss tether and various battery option.

5.7.1 Tether

Tethering is the practice of using a mobile device such as a robot to connect another device, such as a laptop or any computing device. In this robot, the tether carried both power and communication cable. Figure 28 shows the connection diagram [55]. At one end, it was
connected to the robot’s power (+ve), ground (GND) and data (DATA) and the other end, ground (GND) and data (DATA) was connected to USBB2dynmixal port and the power (+ve), ground (GND) was connected to 12V, 2A DC adapter.

![Tether connection diagram](image)

Figure 28: Tether connection diagram

5.7.2 Battery

They are several types of batteries available in the market but most commonly used for robots are nickel metal, nickel cadmium, lithium ion, lead acid and lithium polymer batteries which are discussed in the following section.

Nickel Metal: A nickel–metal (NiMH or Ni–MH) hydride battery, is a rechargeable battery. This is by a long shot, the most widely recognized sort of battery utilized as a part of versatile robots. NiMH batteries are rechargeable and their quality (cost/limit/weight) is difficult to beat. There is no memory impact, which means each charge ought to convey the battery up to full limit [56].

Nickel Cadmium: The nickel–cadmium battery (NiCd battery or NiCad battery) is a rechargeable battery utilizing nickel oxide hydroxide and metallic cadmium as anodes. These batteries have memory effect due to which they are slowly disappearing. If the battery is not
discharged properly but still recharged it to full capacity, then a part of the capacity is lost each time [57].

Alkaline Battery: Alkaline batteries are a type of primary battery dependent upon the reaction between zinc and manganese oxide. They are not rechargeable battery but a rechargeable alkaline battery allows reuse of specially designed cells. These are the least expensive batteries in the short term, and provide a higher voltage than NiMh, but are not great for the environment, and requires replacements often [58].

Lithium Ion: A lithium-ion battery (Li-ion) is a rechargeable battery in which lithium ions move from negative electrode to positive electrode during discharge, and back when charging. They are one of the most popular types of rechargeable batteries for portable electronics, with a high energy density, small memory effect, and only a slow loss of charge when not in use. Since lithium-ion chemistry does not have a "memory", partial discharge does not harm the battery pack. But, if the voltage of a lithium-ion cell drops below a certain level, it is ruined. Lithium-ion batteries age and they only last two to three years, even if they are sitting on a shelf unused [59].

Lithium Polymer: Lithium ion polymer also known as 'lipo' or 'lipoly' batteries. They are rechargeable battery in which lithium ions move from negative electrode to positive electrode during discharge and vice-versa when charging. Li-ion batteries uses an intercalated lithium compound as one electrode material, compared to the metallic lithium used in a non-rechargeable lithium battery. The electrolyte, which allows for ionic movement, and the two electrodes are the constituent components of a lithium-ion battery cell [60]. They are fast becoming the most popular type of battery because of their light weight, high discharge rates, energy density, and small memory effect, low self-discharge and relatively good capacity, except the voltages
increase in increments of 3.7V. Lithium-ion batteries can be dangerous under some conditions and can pose a safety hazard since they contain, unlike other rechargeable batteries, a flammable electrolyte and are also kept pressurized. So for safety it should never be charged or used when unattended [61].

5.7.3 Battery selection and Schematic diagram

Among the various battery types discussed above, Lipo battery was used due to the advantages discussed above; in which the main feature that attracted and made more suitable for this robot is its light weight and high discharge rate. The lipo battery with rating 3.7V, 720mAh, 20C lipo battery was used whose dimension were 1.68 x 0.96 x 0.32 inch, which perfectly fit inside each module of the robot. Figure 29 shows the schematic diagram of the connection.

![Schematic diagram of battery connection](image)

Figure 29: Schematic diagram of battery connection

Each module had a single cell (1s) 3.7V LiPo battery inside, which was connected with two other modules in series to make up the 11.1 volts required to power the segments. Therefore, pairs of three modules should always be used. Each segment’s power was then connected in parallel to
the rest of the snake. This would allow for any of the modules to always have enough current available to them to provide the maximum torque possible to each of the motors. It also ensured that each segment of the snake would always be powered while the other segments of the snake were able to operate.
CHAPTER 6
CONTROL ALGORITHM

As described in Chapter 3, the finest way to implement the control of snake robot is through Central Pattern Generator, which is a form of distributed control system. In this chapter, a control algorithm is written to get locomotion based on square wave type motion, climbing algorithm to climb a pole and a standing cobra position for surveillance. The control of serpentine motion is also presented.

6.1 Square Wave Motion Algorithm

The basic idea for this movement was inspired by sidewinding locomotion. In this motion, there was always contact between the body of the robot and the surface of ground unlike serpentine motion. At any given instant, at least two contact points of the snake were in contact with the ground. The movement was generated due to difference in the friction, which was created by adjusting the contact surface between body of snake robot and the ground (Figure 30). If the back portion of the robot had more contact with ground when compared to the front portion, then the friction in the back was more than front. Then, when square wave propulsion was applied the robot, it moved forward due to difference in the friction. The algorithm for this kind of motion is shown in Figure 32 and is discussed below.

Step 1: First, curve fitting procedure is implemented to optimize the entire robot which make the shape of the robot in the form of square wave

Step 2: Once the curve fitting procedure is executed, then the robot configure itself to create four contact point A, B, C and D. These contact points are then formed by using both even and odd joints. Even joints in the module are those which bends in the vertical plane, whereas odd joints in the module bends in horizontal plane.
Step 3: After the initial configuration are obtained, the contact points A and B have low friction as compared to points C and D. This is achieved by lifting the even modules on the vertical plane to a degree of β such that there is less contact surface area on the ground. The joints connecting the contact points (A, B), (B, C), (C, D) have no contact surface area with the ground which is attained by lifting the even module in the vertical plane to a degree of α as shown in Figure 30.

Figure 30: CAD Model of Square Wave

Figure 31: Friction distribution of Square Wave Motion
STEP 1: Curve fitting procedure to optimize the entire robot to square shape.

STEP 2: Go to initial configuration with four contact point A, B, C and D

Contact Point A & B less surface area on the ground and Contact point C and D more surface area on the ground

Positive cycle Propulsion

Angle reached

Check Load

NO

YES

Negative cycle Propulsion

Check Load

Angle reached

NO

YES

Figure 32: Control Algorithm for Square Wave
Now the positive cycle propulsion was applied, the snake robot took the shape of square wave starting from positive cycle of the square wave. The positive cycle propulsion was applied until it reached the desired angles. If the desire angles were reached, then the algorithm moved to next step or it checked the load feedback value to verify whether the servo was moving or not. Once the positive cycle propulsion was completed, then the negative cycle propulsion was applied which generated resultant force due to difference in the friction, thus, pushing the robot forward.

6.2 Pole Climbing Algorithm

The control algorithm used for climbing is given in Figure 34. The closed-loop control of the mechanism’s locomotion had been possible with the position and torque sensors located inside the servo of each module. The steps involved are explained as follows.

Step 1: The pole fitting procedure is used to optimize the entire robot with respect to the pole, i.e. the robot is adjusted according to the diameter of the pole. With the proposed control algorithm for climbing, the robot can climb a pole of diameter ranging from 30mm to 80mm. In this method, two contact points upper contact point (A) and lower contact point (B) are used to grab and climb the pole. To grab the pole, four modules are used to create a single contact point. For instance, module no. 2 to module no. 5 are used to create a single contact point as module no. 1 being the head, module no. 2 and module no. 5 grips the pole and module nos. 3 and 4 are to adjust the contact point with respect to the diameter of the pole. Module nos. 3 and 4 close to hold the pole and they open to release the pole. Module nos. 6, 7 and 8 are used to lift and pull (propulsion point) the contact point, where module nos. 6 and 8 provide the propulsion and module no. 7 is in the perpendicular plane to the pole, so it adjusts itself with the pole and the modules from 9 to 12 in order to create lower contact point in a similar way.
Step 2: Once the pole fitting procedure is done, then the next step is to go to the initial configuration with two contact points A (upper contact point) and B (lower contact point) firmly grabbing the pole (Figure 33(a)).

Step 3: After the initial configuration is obtained, only the upper contact point (A) is released and propulsion is provided to lift the point A. The propulsion is provided until it reaches the desired angles (Figure 33(b)). If the desired angles are reached, then the algorithm move to Step 4 or it checks the load feedback value to verify whether the servo is moving or not.

Step 4: As soon as the propulsion is provided and required angle is reached, then the contact point (A) grabs the pole and again, the angle and load feedback are checked to confirm whether the upper contact point has held the pole (Figure 33(c)). Once the contact point (A) holds the pole firmly, then contact point B is released and propulsion is provided to pull upwards and then, the contact point (B) holds the pole (Figure 33(d)).

![Figure 33: CAD Model of Robot Climbing](image-url)
Figure 34: Control Algorithm for Climbing
The procedure was repeated from Step 3 to climb the pole. The robot climbed 100mm for every propulsion. To lift the contact point A from its initial position, the servo was moved 50° from angle 90° to 40°, and to pull the contact point B, the servo was moved 50° from angle 40° to 90°. In every step, the angle and load feedback were checked to confirm whether the task was completed.

6.3 Standing Cobra Position for Surveillance

The snake robot in standing cobra position is the best position for surveillance from ground while on the mission. Figure 35 shows the snake robot in cobra position. At this position, the head was in the air with 5 DOF to move around and got wide range of view through camera.

Figure 35: CAD model of Standing Cobra Position
The height of the head could be varied by adjusting the module position. All the even modules angles A, C and E were increased or decreased to vary the height of the robot’s head from the ground and the odd modules B and D were changed to vary the view in horizontal plane. Thus by performing this, a complete 360° view was achieved at various heights. This position was controlled manually by the user at the remote place to move the head by sending direct angles to the servo.

7.4 Sine Wave Motion with Passive Wheel

This type of motion was produced by a sinusoidal wave being formed with the individual module of the snake robot. As the wave moved through the time domain, the snake robot should be able to generate forward motion. This forward motion was generated by the fact that passive wheels were used on the base of the snake robot.

The passive wheels was used to generate different coefficients of friction in different planes. This was achieved by the wheels ability to only roll in one direction. Because of this, a low coefficient of friction was generated in the direction of wheel spin, where a high coefficient of friction was generated in the opposing direction. This motion was governed by the equation given below. From this equation, it is evident that if the coefficient of friction of y axis is greater in than x axis, then the force along the y axis will be greater than force applied in x axis [34].

\[
F_y = F_t \sin(\theta) \times \mu_y \\
F_x = F_t \cos(\theta) \times \mu_x
\]

- \(F_t\) = Force applied by previous segment
- \(F_y\) = Force in y direction
- \(F_x\) = Force in x direction
- \(\mu_y\) = Coefficient of friction in the Y direction
- \(\mu_x\) = Coefficient of friction in the X direction
- \(\theta\) = angle of applied force (assumed 45 for simplicity)
Figure 36 shows how the forward motion is generated. If the force on the left side and on the right side are same, then the resultant force would be in forward direction. This is because, a resulting force in the direction of wheel spin is to be significantly greater than the force that was obtained in the alternate direction. To turn left, the force on the left side is greater than that of right side causing the robot to move in left direction as shown in Figure 37. Similarly to turn right, the force at on the right side is greater than left side causing the robot to move in right direction. Figure 38 shows how the robot is maneuvered in a smooth surface.
Figure 38: Sine Wave Motion with Passive Wheel Adapter
7.1 Testing Microcomputer and Communication

The microcomputer used in this robot was Raspberry Pi Zero. As discussed in Chapter 5, Robotic Operating System (ROS) was used as platform to control the robot. The Raspberry Pi Zero uses Raspbian Linux operating system (OS). In this OS, the Raspbian Jessie was installed. To install the ROS in this operating system, there was a different version of ROS which is ROSberryPi.

Once the ROS was installed the microcomputer, the next step was to install Dynamixel_controllers package. This package contained a configurable node, services and a spawner script to start, stop and restart the controller plugins. Reusable controller types were characterized for common Dynamixel motor joints. Speed, position and torque could be set for individual servo [62]. After the package had been installed, a launch file was written which would set all necessary parameters to start up the controller manager that will connect to the motors and publish raw feedback data (e.g. current position, goal position, error, etc.) at a specified rate. When the controller manager was created and launch file was run, the controller manager was publishing feedback on /motor_states/pan_tilt_port topic. The rostopic echo was used to display the feedback of the servo. Each servo were identified by their ID number. In this case, the ID were assigned from 11 to 26 as there were sixteen servo connected. Figure 39 shows the confirmation of communication working as all the raw feedback data from sensor are received data.
7.2 Testing Servo and Controlling its Position

In this section, the testing of servo and controlling its position were done by creating a joint controller with motors. First, a configuration file was created which contained all parameters like motor id, initial position, minimum and maximum position, joint speed etc. which were necessary for the controller. This configuration file was saved as tilt.yaml file. Subsequently, a launch file was created, which loaded controller parameters to the parameter server and started up the controller (start_tilt_controller.launch). Then, once the communication bus was established by running the control manager then this configuration file was launched. Then, to run the servo rostopic pub -1 /tilt_controller/command std_msgs/Float64 was used [63]. Figure 40 shows the servo moving from 90° to 0° and the load of the each servo.
Figure 40: Position and Load Feedback

7.3 Snake Robot in Standing Cobra Position

The snake robot in cobra posture is the ideal position for surveillance from ground while performing a task. Figure 41 shows the snake robot executing the standing cobra position. At this point, the head was in the midair with 5 DOF to move around and was able to acquire a complete 360° view through camera. The height of the head could be increased or decreased by adjusting the module position.
7.4 Square Wave Motion of Snake Robot

The square wave motion of snake robot was executed based on the control algorithm explained in Chapter 6. Figure 42 shows the implementation of square wave motion where two complete cycle of square wave was executed, i.e. two positive cycle propulsion and two negative cycle propulsion. The snake robot travelled 200mm per one complete cycle.

7.5 Climbing of Snake Robot

The climbing of snake robot was achieved based on the climbing algorithm described in Chapter 6. Figure 43 shows the execution of climbing algorithm where five complete cycle of the algorithm was executed, climbing a distance of 500mm as the robot climbs 100mm for every propulsion.
Figure 43: Pole Climbing
CHAPTER 8

CONCLUSION AND FUTURE WORKS

In this research work, the design, control and implementation of a 3D printed snake robot has been presented. From literature, the current state of snake robotics, focusing on the design of different types of snake robots that have been constructed over the decades were reviewed along with currently implemented snake robots. In Chapter 3, the control of the snake robot was focused, where it was decided that Central Pattern Generators (CPG) is the best control method to use for this type of robot. In Chapter 4, the mechanical design of the robot is shown. In addition, the design process and construction of both the modules for the snake were discussed, as well as, the construction of different add-ons required to generate different forms of movement, such as the serpentine motion. 3D printing as a fast manufacturing process was also presented and shown how this method of construction is ideal for prototyping this type of robot; as the relatively complicated segments can be produced much faster than the traditional methods of construction. In Chapter 5, the electrical design of the robot was concentrated on, where the many subsystems of the robot were presented such as the power distribution system used, as well as the various sensors and the microcomputer that enabled both local control and sensor processing, this being Raspberry Pi Zero. In Chapter 6, the control of the robot was delved into focusing on the three types of movement that has been achieved with the constructed robot; these being serpentine motion, square wave motion and the ability for the robot to climb up a cylindrical poll. Finally in Chapter 7, the experimental results of the robot was shown where all stages of the design were explained. Testing the various components of the robot such as the microcomputer, all the way through to the implementation of the robot itself, during the different movement patterns that were explained in Chapter 6 was discussed. From this, one can see that
the design, construction and control of a high degree of freedom system, this being a snake robot, has been successfully accomplished.

Even though the basic functionality of this type of robot has been presented in this research, the future work with this system could be taken down many different avenues. The design of the segments could be optimized, with other factors being considered into the design to be taken into account, such as material selection to enable more grip to be considered. A study into how a real snake is able to achieve the same motions without the use of passive wheels should also be undertaken, such as by determining whether the direction, size and placement of their scales is a significant factor. Waterproofing of the snake robot could be considered as having a robot of this type to be able to enter the water could have many applications, such as during reconnaissance and the ability to traverse pipes with liquid inside them. More movements of a snake robot, and how the current movements employed to this robot behave in different environments as well as different algorithms that could be used to control the robot should be looked into. For example, as the snake robot should be able to be inserted into a pipe, which method would work best to traverse the pipe and can the current robot achieve these movements? Lastly, the automation of this type of robot should be thoroughly explored. In literature, a lot of work has been completed into the creation and movements employed by these systems, but little work has been conducted into the autonomous deploying of these units, with many robots being tele-operated. Many challenges will have to be overcome, such as the ability for the robot to accurately localize and path plan using its non-uniform movement structure. Other algorithms that are becoming popular with other types of robots should be tested, such as SLAM, which will become significantly more difficult as these systems do not have a fixed point to use as a
reference point for the entire robot as well the robot have to move much more to achieve a smaller displacement.
REFERENCES

[33] B. Champion, Investigation of snake robotics and a construction of this type of Robot, Australia: Deakin University Australia Academic, 2013.

[34] X. Wu and S. Ma, "Autonomous collision-free behavior of a snake-like robot," in Robotics

[52] "Certified Projects Overview," ZigBee Alliance, [Online]. Available:
http://www.zigbee.org/Products/CertifiedProducts/CertifiedProductsOverview.aspx. [Accessed 20 May 2016].

VITA

Ikram Hussain Mohammed is from Tamil Nadu, India. He studied Electrical and Electronics Engineering and earned a Bachelor’s degree in Electrical Engineering from Anna University in India. He earned a Master’s degree in Electrical and Computer Engineering from The University of Texas at San Antonio. His future plan is to work related to Control and Robotics applications.