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Abstract In this paper we introduce a novel bit error rate

(BER) feedback transmit power control (TPC) system

using a first-time third order quadratic approximation of the

power–time curve. This approximation improves the power

efficiency of a dual-rate TPC algorithm in terms of reduced

total transmit power by smoothing transmit power tran-

sients during adaptive iterations. We show that the third

order approximator outperforms linear and second order

approximators in terms of transmit power savings, sensi-

tivities, error magnitude, and better tracking performance

in following reference desired power curves. For the ap-

proximator, we determine operational bounds for stability,

and demonstrate algorithm behavior using critical valued

inputs. In addition we demonstrate value in using a

dynamic, rather than static, performance benchmark for

quality of service approximation (obtained used scaled

maximum acceptable BER), and provide heuristic esti-

mates for the input parameters for the dynamic benchmark.

Keywords Cognitive radio � Transmit power control �
Interference avoidance � Quadratic approximator � Power

usage efficiency

1 Introduction

Cognitive radio (CR) devices often opportunistically

access the wireless spectrum [1, 2], and as such, must

practice interference avoidance through various energy

efficiency techniques (IA) e.g. [3, 4]. For example, wireless

CR PAN devices tend to operate in short range, low power

communications and use technologies such as WiMedia,

Bluetooth, and ultra-wideband, UWB [5]. The authors

consider it important to develop a technology-agnostic

interference avoidance technique that is responsive to

quality of service (QoS) requirements such as maintaining

acceptable bit error rate (BER). In this paper, we use the

energy efficiency approach of employing a transmit power

control (TPC) system for wireless CR devices using a

novel, first time third order quadratic approximation of the

power–time curve, called the BER–TPC. This paper

addresses the power efficiency of adaptive TPC in terms of

reduced total transmit power of the network by smoothing

transmit power transients during adaptive iterations using a

novel, first time third order quadratic approximation of the

power–time curve. We also advance the quadratic ap-

proximator approach by implementing this system using

algorithms at both constituents (transmitting and receiving)

of the communication system instead of only at the trans-

mitter [6].

In theory, there is an optimal power–time curve reflec-

tive of the minimum amount of power necessary with

which communicating systems can transmit while main-

taining acceptable BER. We seek to model this curve using

heuristically estimated dual-rate power adjustments during

adaptive iterations. A very important aspect of the dual-rate

adjustment is a dynamic benchmark with the initial value a

scaled maximum acceptable BER. As maximum accept-

able BERs are device specific, the algorithm is tailored to

maintain required BERs. We show that the dynamic

benchmark is superior to a static one, and introduce heu-

ristically obtained input parameters for manipulation of the

operation of this benchmark. Because transmit power is

adjusted using a mathematical formula, it is trivial to obtain

operational bounds for stability, robustness, to calculate the
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rate of power adjustment, and impose limits on transmit

power.

Feedback approaches for power control have already

been used in state-of-the-art approaches such as in [7–9], in

which signal-to-interference-plus-noise ratio (SINR) esti-

mations are used. In [10], the authors establish bounds on

the practicability of the CR channel sensing feedback in

power control when outage constraints for licensed users

are a consideration. In [8], the authors use SINR feedback

for a joint strategy on power control and radio channel

allocation, subject to constraints on transmission power and

data traffic rates.

One feedback-based TPC algorithm is proposed in [11]

called the distributed power controller (DPC). The DPC

uses the proportional integral derivative (PID) controller

concept that produces a stable system and is used to

adaptively tune PID gains. The controller input is the dif-

ference between actual received SINR and target SINR

determined by QoS requirements.

However, according to the authors of [12], in weak signal

environments, the SINR feedback-based methods have the

issue of being constrained by some inaccuracy of SINR

estimates. Therefore, in the proposed system, SINR feedback

is replaced with BER measurements obtained from pilot

subcarriers. The data in received pilot arrays are compared to

expected data to estimate BERs. The receiver compares

current BER with maximum BER allowed and sends a binary

signal to the transmitter indicative of acceptable or unac-

ceptable BER. In addition, the proposed controller is different

from PID and is tailored to a BER-based feedback system.

One should also note that the proposed system reduces

the transmission power for an active established link.

Because the proposed method is technology-agnostic, it

can be integrated with extant power saving techniques e.g.

in sensor networks exploiting duty cycling by switching off

the power during periods of inactivity [13], with techniques

employing data reduction through exploiting spatial or

temporal correlation [14], techniques utilizing optimization

of routing paths [15–17], in trading off modes of operation

in large scale, high density, high mobility wireless sensor

networks for increased energy efficiency.

The layout of the paper is as follows. In Sect. 2, we

describe the system model and control parameters. In

Sects. 3 and 4, we develop and compare the first, second,

and third order approximators in terms of overshoot and

damping. Finally, we submit results, including comparison

with SNR controllers, and close with conclusions.

2 System Model and Control Parameters

The system includes one or more licensed or primary users

(PUs), and several interoperable secondary users (SUs).

The power control system operates separately for each

communicating pair of PAN devices. We stipulate that our

PADs devices use CR technology [18, 19] and we use the

WiMedia Alliance multiband orthogonal frequency divi-

sion multiplexing (MB-OFDM) UWB system [20]. This

paper accepts the SDCR approach for applying the pro-

posed power adaptation technique [21]. Below, we present

the control parameters and their operation in the first,

second, and third order approximators.

2.1 Control Parameters ½RF
e ðkÞ; RD

e ðkÞ; RM
e �

at Receiver

At the receiver, RF
e ðkÞ is the mean of the BER in the MB-

OFDM pilot subcarriers. RF
e ðkÞ is compared to RM

e ; the

maximum acceptable BER (usually manufacturer defined)

for a SU, and we obtain

Rd
eðkÞ ¼

1; if RF
e ðkÞ�RM

e

�1; if RF
e ðkÞ[ RM

e

( )
; ð1Þ

which is sent to the transmitter.

2.2 Control Parameters ½kðkÞ; RFs
e ðkÞ; eoðkÞ�

at Transmitter

At the transmitter, parameter RFs
e ðkÞ is called the memory-

based feedback index and is a function of BER feedback,

while k(k) is a dynamically adjusted benchmark. At ini-

tialization, RFs
e ð0Þ ¼ kð0Þ ¼ ðs � RM

e Þ
�1; where s is a scal-

ing factor. RFs
e ðkÞ is iteratively updated using

RFs

e ðkÞ ¼ RFs

e ðk � 1Þ þ Rd
e : ð2Þ

The parameter k(k) is defined in an iterative manner as

kðsÞ ¼
kðs� 1Þ � 1; if kCðkÞ[ kT

kðs� 1Þ þ 1; if kCðkÞ\� kT

( )
; ð3Þ

where kC(k) is an initialized counter and kT is an integer

threshold that, when crossed triggers an adjustment in k(k).

kC(0) = 0, and is reset to zero when either of the cases

described in (5) are satisfied. It is updated using

kCðkÞ ¼
kCðk � 1Þ þ 1; if RF

e ðkÞ�RM
e

kCðk � 1Þ � 1; if RF
e ðkÞ\RM

e

( )
: ð4Þ

In the BER feedback power control (BER–TPC) algo-

rithm, the control error, êðkÞ is defined by

êðkÞ ¼ kðkÞ � RFs

e ðkÞ; ð5Þ

and determines the magnitude of the increase/decrease in

transmit power.
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2.3 Approximators a1ðkÞ; a2ðkÞ; a3ðkÞ ¼ f ðRFs
e ðkÞ;

kðkÞ; eoðkÞÞ

In this subsection, we introduce the control approxima-

tors, a1(k), a2(k), a3(k). The a1(k) linear control parameter

is obtained by tuning or normalizing eo(k), using the

dynamically adjusted benchmark, k(k). However, in light

of the theoretically approachable time versus power

curve, we can cite Taylor’s theorem, which states that if a

function f is differentiable at point a, then it has a linear

approximation at that point. To reduce the error in the

approximation, we use quadratic second and third order

approximators by normalizing eo(k) using k(k)2, k(k)3 as

in (7) and (8).

ðaÞ a1ðkÞ ¼ 1� êðkÞ
kðkÞ ¼ 2� RFs

e ðkÞ
kðkÞ ;

ðbÞ 0\kðkÞ; kðkÞ 6¼ 0:5 � RFs
e ðkÞ;

ð6Þ

ðaÞ a2ðkÞ ¼ 1þ êoðkÞ
kðkÞ2

¼ 1þ kðkÞ � RFs
e ðkÞ

kðkÞ ¼ 2� RFs
e ðkÞ

kðkÞ2
;

ðbÞ 0\kðkÞ\2 � RFs

e ðkÞ;

ðcÞ kðkÞ 6¼ �0:5� [ 0:5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 � RFs

e ðkÞ
� �q

;

ð7Þ

ðaÞ a3ðkÞ ¼ 1þ kðkÞ � RFs
e ðkÞ

k3ðkÞ
¼ 1þ 1

k2ðkÞ
� RFs

e ðkÞ
k3ðkÞ

;

ðbÞ 0\kðkÞ\1:5 � RFs

e ðkÞ:
ð8Þ

An important contribution of quadratic approximations

is that they can be mathematically examined in terms of

stability and operational range. We stipulate RFs
e ðkÞ is

unbounded, and assume stability in (6a), (7a), (8a) by

constraining k(k) to avoid poles and zeros using (6b), (7b,

c), and (8b), respectively. We determine the operational

range of a1,2,3(k) by observing the conditions over which

ao(k) is monotonic.

2.4 Power Control, BER–TPC and Comparative PID

Algorithms

Transmit power is, therefore, adjusted using

PSU
T ¼ P

!ðkÞaðkÞ; ð9Þ

where PSU
T is the total power in a MB-OFDM band, and

P~ðkÞ is a vector of the power profile in the band, before

power adjustment. The aim of the BER–TPC algorithm is to

minimize PSU
T through iterative adjustment of kðkÞ; RFs

e ðkÞ;
while satisfying the constraints

XM
i¼1

X128

j¼1

hi;jPi þ PSU
T � Smax;

RSU
e �RM

e ;

ð10Þ

where RSU
e is the SUs mean BER over the life of the

transmission. An important contribution is that an upper

limit on transmit power is deterministic using

RFs

limðkÞ ¼ kðkÞ 1�
kðkÞð� lnðPðkÞÞÞ þ ln PSU

maxðkÞ
� �

lnðPðkÞÞ

� �
;

ð11Þ

where RFs

limðkÞ is a lower limit on the value of RFs
e ðkÞ and

PSU
maxðkÞ is a dynamic limit on SU transmit power. For

example, (11) is the limit on the second order approximator

(7).

2.5 Comparison of First, Second, and Third Order

Approximators in Terms of Overshoot, Damping

We perform the comparison of the three orders approxi-

mator in the calculation of ao(k) as follows. We introduce

RFs

e;min as the minimum acceptable value for RFs
e ðkÞ: We also

introduce dmax;RFs
e ðkÞ;kðkÞ; which we define as the maximum

possible deviation (dependent upon the dpi value) between

RFs
e ðkÞ and k(k). Let us define a dynamic range for RFs

e ðkÞ
and place further restrictions on RFs

e ðkÞ; RFs

e;min :

RFs
e ðkÞ 2 kðkÞ � dmax;RFs

e ðkÞ;kðkÞ; kðkÞ þ dmax;RFs
e ðkÞ;kðkÞ

h i
;

ð12Þ

RFs

e;min ¼ �dmax;RFs
e ðkÞ;kðkÞ; ð13Þ

RFs

e ðkÞ 2 RFs

e;min; 1
� i

: ð14Þ

Because the lower bound for k(k) is 0, we can obtain a

lower bound for (12) and (14). Stability of error exponent

approximation is ensured provided by the design rules and

assumptions (i–iv), which provide bounded inputs and

outputs:

(i) Restriction in (12) provides acceptable oscillation

magnitude in calculation of a1,2,3(k) due to low

sensitivity to RFs
e ðkÞ:

(ii) Assumption: Eqs. (12) and (14) are always true due to

channel diversity and optimal channel switching in

OFDM. As BER on one channel decreases, another

channel may be switched too, depending on BER and

other criteria.

(iii) Assumption: given that k(k) tracks RFs
e ðkÞ by the

dynamic range restrictions in (12), a1,2,3(k) % 1 as

subject to the statement in (i). As RFs
e ðkÞ is
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approximately equal to the value of with maximum

deviation the value is always approximately equal to

1.

(iv) Communication transceivers actual capabilities are

limited by the receiver sensitivity and transmitter

power; therefore, maximum and minimum values of

a1,2,3(k), k(k), and RFs
e ðkÞ are already set by physical

conditions and limits of the transceiver.

We introduce the ideal conditions of the approximator

as ao(k) = 1, where the power output is equal to the

required power output based on the BER feedback RF
e ðkÞ:

Furthermore, behavior of the approximator’s operation

near critical points at poles of ao(k) function is described by

the following:

RFs

e ðkÞ 	 RFs

e;min :

(i) Dao(k) is large in the first order approximator due to

the 1/k(k) term.

(ii) Dao(k) in second and third order approximators are

reduced greatly as compared to the first order

approximator.

RFs

e ðkÞ 
 RFs

e;min :

(iii) Dao(k) is larger for the first order approximator than

the second and third order approximators, but

smaller in scale than that in case (i).

(iv) Dao(k) is small for second and third order approximators.

We evaluate the approximator performance with con-

ditions given in (11), (13) and (14) for first, second, and

third order versions of error exponent approximations for

a1(k), a2(k), a3(k) (Eqs. (6)–(8), respectively), and present

the following conclusions on approximator performance.

The first order approximator has larger overshoot tracking

the ‘‘ideal’’ line with ao(k) underdamped. The second order

approximator has significantly reduced overshoot, ao(k) is

damped, and tracks the ‘‘ideal’’ line well with fast con-

vergence. Third order converges quickest and tracks the

‘‘ideal’’ line with minimal overshoot, with ao(k) damped.

2.6 Overview and Model of BER–TPC System

Figure 1 is a block diagram model of the BER–TPC sys-

tem. At the receiver, BER feedback is calculated at the

pilot channel data comparator and passed to the BER

feedback thresholder where it is compared to the maximum

acceptable BER. The result value Rd
eðkÞ ¼ �1 is sent to the

transmitting CR. There, using the dynamic benchmark

adjustor and the instantaneous adjustor, k(k) and RFs
e ðkÞ are

respectively updated. The error êðkÞ is calculated and sent

to the controller calculator, which results in an updated

a(k), which, along with the pre-adjusted power vectors

½P~ðkÞ� is used to obtain the new power update.

3 Results and Simulations

The Monte Carlo method was used and simulation

parameters are as follows: modulation QPSK, attenuation

and path loss are assumed to be negligible, 14 MB-OFDM

bands with bandwidth of 528 MHz, each 128 OFDM

subcarriers, data rate 3 Mbit/s, transmitted data 4 Mb,

subcarrier interference (PU) power is generated using a

continuous uniform distribution over a range of -0 to

Fig. 1 Block diagram of

approximator transmit power

control system
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30.3 dBm, Smax 47–49 dBm, 10e� 6�Re
M � 10e� 3:

Typical OFDM transmission is used, except the power

control method is applied after band and subcarrier selec-

tion, and before modulation and bit loading. In all simu-

lations, BER is the BER in the data carrying subcarriers.

Table 1 compares the performance of the C(DPC),

C(SNR) [9], first and third order with the second order

approximator. The control parameters for the DPC con-

troller, C(DPC), are o ¼ 0; b = -1, h = 1. In terms of

BER, the third order approximator exhibits superior per-

formance to all other controllers. In terms of transmit

power, the SNR controller is the only one that outperforms

the third order approximator. When both metrics are taken

into account, we conclude the third approximator is the

best performer under the stated conditions.

Figure 2 shows (a) BER and (b) transmit PSD for a

static k = 200 versus dynamically adjusted benchmark

with k(0) = 200, using the third order approximator. The

static benchmark is unchanging. The dynamic benchmark

is adjusted if BER feedback is either consistently above or

below maximum acceptable BER. This produces a tuning

effect in that it affects the size of the increments of transmit

power adjustments. Results indicate that the dynamic

benchmark is preferable to the static one because it is more

responsive to QoS (in this case BER). This can be observed

in that while the transmit PSD is better (lower) with the

static benchmark for SINR [7 dB, BER is unacceptably

high, indicating lack of responsiveness.

The results in Fig. 3 demonstrate the importance of the

device specific initial value for k(k), derived from device spe-

cific maximum acceptable BER (recall kð0Þ ¼ ðs � RM
e Þ
�1

). In

Fig. 3, the correct initial value k(0) = L = 400, is compared in

terms of (a) BER and (b) transmit PSD to k(0) = 0.5L, and

1.5L. The results indicate that for best performance transmit

power adjustment should be done with initial benchmark val-

ues at least equal to the actual value. This ensures fine grained

tuning as opposed to smaller values of k(0), which result in

coarse grained tuning and, thus, very high transmit PSD.

In Fig. 4, we compare the effects of kT = 0.3B, B, 2B,

B = 6, using (a) BER and (b) transmit PSD. Recall kT is

used in determining when long-term BER feedback trends

are used to dynamically adjust power tuning by incre-

menting/decrementing the value of k(k). From observation

of this figure, and similar results obtained using Monte

Carlo methods, we recommend kT C 6 because smaller

values lead to undesirable fluctuations in increment/dec-

rement step size, resulting in coarse grained tuning.

Figure 5a shows the approximators’ BER error magni-

tude (EM) deviation from (maximum acceptable BER)

RM
e ¼ 2� ð10�3Þ for iterations 1–k, while Fig. 5b zooms in

showing (k – x)–k, x = 100. These two figures show that

the quadratic approximators’ performances are consistent,

with best responsivity, and smoothest tracking from the

third order, clearly shown in Fig. 5b. It is obvious, how-

ever, that the first order approximator EM is undamped.

Figure 6a shows the BER performance of the three ap-

proximators in comparison with RM
e : The quadratic ap-

proximators vastly outperform the linear (first order)

approximator, with the third order performing best in

maintaining BER below or near RM
e : Performance between

Table 1 Comparison of PID and SNR controllers to the second order

BER–TPC in terms of BER and transmit PSD, expressed in dB

C(DPC) C(SNR) First order Second order

BER (dB) ?5.65 ?7.12 ?11.4 ?0.7

PSD (dB) ?3.5 -2.6 ?9.7 ?1.8
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Fig. 2 Effect of dynamic benchmark (k(0) = 200) versus static

benchmark (k = 200) on a BER, and b transmit PSD (W/Hz)
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Fig. 3 Effect of three different dynamic benchmark initialization

values on a BER, and b transmit PSD for k(0) = 0.5 * L, L, and

1.5 * L, L = 400

Int J Wireless Inf Networks

123



the second and third order is similar, however, the third

order has a slightly smaller variance, indicating smoother

transients between adaptive iterations. Figure 6b shows

variance of transmit PSD where the third order approxi-

mator outperforms the second order approximator by

0.3 dB. Taking BER, EM and transmit power savings into

consideration, we conclude that the third order approxi-

mator is the best performer.

4 Conclusions

In this paper, we proposed a power control system that uses

a quadratic approximation of the power–time curve for

devices that opportunistically access the wireless spectrum.

It was our goal to reduce total transmit power of a CR

network by, for each device, smoothing transmit power

transients during adaptive iterations. This is achieved using

a distributed closed loop power control system that applies

heuristically estimated dual-rate power adjustments during

adaptive iterations. Because of the non-linear channel

conditions and at times forced compliance with caps on

interference to licensed devices, we attempted to introduce

a highly dynamic, responsive, yet stable approach. We

showed that dynamic (BER) benchmark adjustments

exhibit superior performance to a static benchmark, intro-

duced operational ranges for the approximators’ parame-

ters, and based on transmit PSD variance, BER, and EM

deviation from acceptable BER, determined that the third

order approximator performs best under the specified

conditions. We also demonstrated superior performance in

transmit PSD reduction to conventional SNR feedback-

based controllers. Because the proposed method is tech-

nology-agnostic, it can be integrated with extant power-

saving techniques such as duty cycling, efficient routing,

etc.
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